首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   6篇
  2021年   3篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   16篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2000年   1篇
  1991年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
11.
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway.  相似文献   
12.
Pemphigus is an autoimmune disorder resulting from the interaction between autoantibodies and desmoglein. Oxidative stress seems to be responsible for the onset/aggravation of many human diseases. Actually, it is considered as one of the several factors for the etiopathogenesis of pemphigus. The present study aims to evaluate the oxidative state in the sera of pemphigus vulgaris and pemphigus foliaceus patients by assessing lipid peroxidation, proteins oxidation, and antioxidant enzyme activity. This study included 36 pemphigus vulgaris and 42 pemphigus foliaceus patients as well as a group of controls consisting of 78 healthy volunteers. Malondialdehyde levels (p?<?0.001) and catalase activity (p?<?0.001) are higher in both groups of patients than in the control group. The two groups of patients showed a nonsignificant decrease in the thiol groups compared with the healthy one. A nonsignificant difference was shown between pemphigus vulgaris and pemphigus foliaceus patients, except for the catalase which shows an increase in the pemphigus vulgaris group. We have also found significant correlations between serum oxidative stress marker levels and serum anti-desmoglein antibody levels in the two pemphigus groups. These findings underline the implication of oxidative stress in the physiopathology of pemphigus by the increase in the autoantibodies?? reactivity.  相似文献   
13.
14.
The human zinc finger protein 191 (ZNF191) is a Krüppel-like protein and can specifically interact with the widespread TCAT motif which constitutes the HUMTH01 microsatellite in the tyrosine hydroxylase (TH) gene (encoding the rate-limiting enzyme in the synthesis of catecholamines). Allelic variations of HUMTH01 are known to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. This factor has been isolated from bone marrow and promyelocytic leukemia cell lines indicating that ZNF191 also plays a role in hematopoiesis. Thus, ZNF191 could participate in the regulation of several genes implicated in different functions. Moreover, mice that are deficient in Zfp191, the murine homologue of ZNF191, have been shown to be severely retarded in development and to die approximately at embryonic day 7.5. In order to gain further insight into its biological functions, we have analysed the localisation of Zfp191 throughout mouse development. Expression was detected early during embryogenesis in ectodermal, endodermal, mesodermal and extra-embryonic tissues. In particular, Zfp191 was observed in the developing central nervous system. Interestingly, its expression levels were prominent in areas of proliferation such as the subventricular zone. Zfp191 expression pattern during development can account for the phenotypic features of Zfp191(-/-) embryos.  相似文献   
15.
Agriculture has new challenges against the climate change: the preservation of genetic resources and the rapid creation of new varieties better adapted to abiotic stress, specially salinity. In this context, the agronomic performance of 25 durum wheat (Triticum turgidum subsp. durum Desf.) genotypes (nineteen landraces and six improved varieties), cultivated in two semi-arid regions in the center area of Tunisia, were assessed. These sites (Echbika, 2.2?g?l?1; Barrouta, 4.2?g?l?1) differ by their degree of salinity of the water irrigation. The results showed that most of the agronomic traits (e.g. spike per meter square, thousand kernels weight and grain yield) were reduced by salinity. Durum wheat landraces, Mahmoudi and Hmira, and improved varieties, Maali and Om Rabia showed the widest adaptability to different quality of irrigation water. Genotypes including Jneh Kotifa and Arbi were estimated as stable genotypes under adverse conditions. Thereafter, salt-tolerant (Hmira and Jneh Khotifa) and the most cultivated high-yielding (Karim, Razzak and Khiar) genotypes were tested for their gynogenetic ability to obtain haploids and doubled haploid lines. Genotypes with good induction capacity had not necessarily a good capacity of regeneration of haploid plantlets. In our conditions, Hmira and Khiar exhibited the best gynogenetic ability (3.1% and 2.9% of haploid plantlets, respectively).  相似文献   
16.
Donohue syndrome (DS) is a very rare autosomal recessive disease affecting less than one in a million life births. It represents the most severe form of insulin resistance due to mutations involving the insulin receptor (IR) gene “INSR”. DS is characterized by pre- and postnatal growth retardation with failure-to-thrive, lipoatrophy, acanthosis nigricans, hypertrichosis, and dysmorphic features. An exhaustive INSR gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools, including ESEfinder, MFOLD and Proter software were also used to predict the impact of INSR mutation on INSR on gene expression as well as on the protein structure and function. The results have shown a novel unusual c.3003_3012delinsGGAAG (p.S1001_D1004delinsRE) insertion/deletion (indel) mutation within the exon 16 in the three patients, which represent the fourth indel mutation within the INSR gene. The mutation modifies the secondary structure of DNA and RNA, as well as the composition of exonic splicing enhancers of exon 16. Moreover, despite the conservation of the secondary structure of the IR, the p.S1001_D1004delinsRE in-frame mutation is accompanied by the loss of four amino acids replaced by two residues of different nature and hydrophobicity level in the juxtamembrane domain of the receptor. The results have confirmed the role of the juxtamembrane domain of IR involved in a crucial interaction of the IR with cellular effectors essentially the IR substrate 1 (IRS-1), the SHC and the Nck proteins that ensure the signal mediated by the insulin transduction pathway in target cells. Our findings have also proven the genotype/phenotype correlation between INSR mutation and DS phenotype severity.  相似文献   
17.
18.

Background  

The OmcB protein is one of the most immunogenic proteins in C. trachomatis and C. pneumoniae infections. This protein is highly conserved leading to serum cross reactivity between the various chlamydial species. Since previous studies based on recombinant proteins failed to identify a species specific immune response against the OmcB protein, this study evaluated an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of C. trachomatis infections.  相似文献   
19.
An antimicrobial activity produced by Bacillus subtilis B38 was found to be effective against several bacteria, including pathogenic and spoilage microorganisms such as, Listeria monocytogenes, Salmonella enteridis, and clinical isolates of methicillin‐resistant Staphylococcus species. Nutrients such as carbon, nitrogen sources, and inorganic salts enhanced the production level of the antibacterial activity by B. subtilis B38. A first screening step showed that lactose, ammonium succinate, and manganese most influenced both cell growth and antibacterial activity production. These three factors varied at two levels in eight experiments using full factorial design. Results indicated that maximum cell growth (OD = 10.2) and maximum production of antibacterial activity (360 AU/mL) were obtained in a modified medium containing 1.5% (w/v) lactose, 0.15% (w/v) ammonium succinate, and 0.3 mg/L manganese. Depending on the indicator strain used, the antibacterial activity was 2‐ to 4‐fold higher in the modified culture medium than in TSB medium under the same conditions. Thin layer chromatography‐bioautography assay showed the presence of three active spots with Rf values of 0.47, 0.7, and 0.82 in TSB medium. However, the inhibition zone of two spots (Rf values of 0.7 and 0.82) was slightly larger in the modified medium. Moreover, a large zone of inhibition with an Rf value of 0.3, was observed in this modified medium, instead of the spot having an Rf value of 0.47. These results suggest that the nutrients act as environmental factors, quantitatively and qualitatively affecting the production of antibacterial compounds by B. subtilis B38. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
20.
Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of αvβ3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号